

University of Kerala

Discipline	CHEMISTRY				\rightarrow				
Course Code	UK1DSCCHE101								
Course Title	FUNDAMENTA	LS OF CHE	EMISTRY I						
Type of Course	DSC				8				
Semester	Ι			1					
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	1. Higher secondary	v level science	knowledge						
Course Summary	The course covers	fundamenta	l principles i	n the periodic	classification				
	of elements, chem	ical bonding	, thermodyna	amics and ther	mochemistry,				
	analytical princip	oles, and la	b safety, p	roviding stud	dents with a				
	comprehensive un	derstanding	of key conc	epts in chemi	stry. Through				
	both theoretical lea	arning and ha	inds-on pract	icals in volum	etric analysis,				
	students develop				stry and gain				
	practical experient	ce in experin	nental techni	ques.					
tailed Syllabus:)							
-		Y							

Detailed Syllabus:

Module	Unit	Contents FUNDAMENTALS OF CHEMISTRY I	Hrs 75
Ι	PERI	ODIC CLASSIFICATION OF ELEMENTS	9
	1	Quantum numbers and their significance, Concept of orbitals.	2
	2	Orbital wise electron configuration, energy sequence rule – Pauli's principle, Hund's rule, stability of filled and half-filled orbitals	2
	3	Electronic configuration and classification of elements in to s,p,d and f blocks.	1
~	4	Periodic properties, Ionisation energy, Electronegativity and Electron affinity. Diagonal relationship.	2
50	5	Important characteristics of representative elements: valency, oxidation states, ionic and covalent bond formation Important characteristics of transition elements: variable valency and oxidation states, formation of Complex compounds.	2
II	CHE	MICAL BONDING	9
	6	Energetic of bond formation – Types of Chemical bonds – Energetics of ionic bond formation – Lattice energy – Born Haber Cycle - Fajan's rules.	2

	7	Polarity of covalent bond its relation with electronegativity Electro	2
		negativity scales – Paulings and Mullikan's approaches, factors	
		influencing polarity Dipole moment – its relation to geometry.	
	8	Hydrogen bond – inter and intra molecular – its consequences on	1
		boiling point, volatility and solubility.	
	9	Concept of Hybridisation– sp, sp ² , sp ³ , dsp ² , dsp ³ , sp ³ d ² , and sp ³ d ³	2
		with examples Explanation of bond angle in water and ammonia-	
		VSEPR theory, geometry of molecules with bond pairs of electrons,	S
		bond pairs and lone pairs of electrons, limitations of VSEPR Theory.	\sum
	10	A brief review of molecular orbital approach, LCAO method – bond	2
		order, bond distance and stability of O_2 , O_2^{2+} , O_2^{2-} , NO, NO ⁺ , CO and	
		HF.	
III	THE	RMODYNAMICS AND THERMOCHEMISTRY	18
	11	First law of thermodynamics, mathematical form, intrinsic energy,	3
		enthalpy, reversible, process and maximum work, work of expansion	
		of an ideal gas in reversible isothermal process.	
	12	Heat capacity of gases at constant volume and constant pressure,	2
		derivation of $C_P - C_V = R$.	
	13	Second law of thermodynamics, entropy and free energies Significance	4
		of Δ G, Δ H and available work Criteria of equilibrium, and	
		spontaneity on the basis of entropy and free energy, Gibbs - Helmholtz	
		equation.	
	14	Enthalpies of formation, combustion, neutralization, solution and	2
		hydration	
	15	Relation between heat of reaction at constant volume and constant	3
		pressure Variation of heat of reaction with temperature- Kirchoff's	
		equation	
	16	Hess's law and application – bond dissociation energies and bond	4
		energies of different types of bonds, their calculation and enthalpies of	
		reaction	
IV		LYTICAL PRINCIPLES & LAB SAFETY	9
	17	Analytical methods in Chemistry – Principles of volumetric analysis,	2
		primary standard, standard solution, Calculation of normality, molality	
		and molarity of solutions	
	18	Theory of acid - base titrations: Strong acid - Strong Base, Strong acid	2
1		- weak base, Weak acid Strong base and weak acid-strong base	
		(Explanation with titration curves) Redox titrations:	
.40		Permanganometry- Fe^{2+} and KMnO ₄ and dichrometry - Fe^{2+} and	
\sim		K ₂ Cr ₂ O ₇ , Theory of acid – base and redox indicators.	
	19	Inorganic qualitative analysis, common ion effect- solubility product-	2
		precipitation and inter group separation of cations. Salting out process	
	20	Chromatography- principle and applications of paper and thin layer	2
		chromatography,	
	21	Lab safety - Risk, Hazard, Chemical Hazard.	1
V	VOL	UMETRIC ANALYSIS	30

22	Section A: Volumetric Analysis (8 Experiments from Section A are	15
	compulsory)	
	4. Preparation of standard solutions.	
	5. Neutralization Titrations	
	d. Strong acid – Strong base	
	e. Strong acid – weak base	
	f. Weak acid – strong base.	
	6. Redox Titrations - Permanganometry	ŝ
	c. Estimation of oxalic acid.	$\langle \gamma \rangle$
	d. Estimation of Fe ^{2+/} FeSO ₄ .7H ₂ O/Mohr's salt.	
23	Section B (Open ended: Any 3 experiments are to be conducted -	15
	May be selected from the list or the teacher can add related	
	experiments)	
	1. Dichrometry	
	2. Iodometry & Iodimetry	
	3. Complexometry	
	4. Colorimetry	

References

- 1. B.R Puri, L R Sharma K C Kalia, *Principles of Inorganic Chemistry*, Sobhanlal Nagin Chand & Co. New Delhi
- 2. Manas chanda, *Atomic structure and Chemical bonding in molecular spectroscopy*, Tata Mc Graw Hill.
- 3. S Glasstone, Thermodynamics for Chemists, Affiliated Eat West Publishers
- 4. J D Lee, Concise Inorganic Chemistry, ELBS.
- 5. R P Rastogi and R R Misra, An Introduction to Thermodynamics.
- 6. D.A Skoog, D M West, F J, Holler, S R Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brookes/Cole, Thomson Learning, Inc, USA, 2004.
- 7. Day and Underwood, *Quantitative analysis: Laboratory manual*.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the rules for filling electrons in atomic orbitals	U	PSO - 1
CO-2	Discuss theories of chemical bonding and their limitations	U	PSO - 1
CO3	Predict geometry of molecules from the type of hybridisation.	Ар	PSO – 1,2,3

CO 4	Recognise fundamentals of thermodynamics and the predict spontaneity of reactions.	Ар	PSO – 1,2,3
CO 5	Critically select suitable indicators for acid base and redox titrations	Е	PSO – 1,2,3
CO 6	Apply the basic principles in qualitative analysis and identify cation and anion	Ар	PSO – 1,2,3,4

Name of the Course: FUNDAMENTALS OF CHEMISTRY I

Credits: 3:0:1 (Lecture:Tutorial:Practical)

	Identify	cation and amon										
Name	R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: FUNDAMENTALS OF CHEMISTRY I Credits: 3:0:1 (Lecture:Tutorial:Practical)											
CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)						
1	CO-1	PO- 1,6 PSO - 1	U	F, C	L	-						
2	CO-2	PO – 1,6 PSO - 1	U	F, C	L	-						
3	CO3	PO-1,2,6 PSO – 1,2,3	Ap	F, C	L	-						
4	CO 4	PO-1,6 PSO – 1,2,3	Ар	F, C	L	-						
5	CO 5	PO-1,6 PSO – 1,2,3	Е	F, C	L	-						
6	CO 6	PO-1,2,6 PSO – 1,2,3,4	Ар	F, C, P	-	Р						

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2	-	-	-	-	1	-	-	-	-	2	-	-
CO 2	2	-	-	-	-	1	-	-	-	-	2	-	-
CO 3	2	1	3	-	-	1	1	_	_	-	2	-	-

CO 4	2	3	2	-	-	1	-	-	-	-	2	-	-
CO 5	2	3	3	-	-	1	-	-	-	-	2	-	-
CO 6	1	2	3	2	-	1	2	-	-	-	2	-	-

Correlation Levels:

Level	Correlation	
-	Nil	
1	Slightly / Low	
2	Moderate / Medium	
3	Substantial / High	
		Ć

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

TOF FYUN

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark	- ×	\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark			\checkmark
CO 6	✓ <u></u>			\checkmark

University of Kerala

Discipline	CHEMISTRY								
Course Code	UK1DSCCHE1	UK1DSCCHE102							
Course Title	CHEMICAL FF	RONTIERS	– BONDINO	G TO					
	ENVIRONMEN	TAL PERS	PECTIVES						
Type of Course	DSC			4					
Semester	1								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	1. Higher se	condary leve	l science kno	wledge					
Course Summary	The course cove	rs the period	lic classifica	tion of eleme	ents, chemical				
	bonding, organo	metallic che	emistry, env	ironmental p	ollution, and				
	analytical princip	ples, includi	ng volumetri	ic analysis. S	Students learn				
	about quantum nu	umbers, orbit	al concepts, e	electron config	guration, bond				
	energetics, molec	cular geometr	ry, and vario	us analytical t	echniques for				
	qualitative and qu	uantitative ar	nalysis. They	also gain an	understanding				
	of the biologica	al, environn	nental, and	industrial ap	plications of				
	chemistry.								
ailed Syllabus:									
tailed Syllabus:		7							

Detailed Syllabus:

Module	Unit	CHEMICAL EPONTIERS PONDING TO ENVIRONMENTAL	Hrs
		CHEMICAL FRONTIERS – BONDING TO ENVIRONMENTAL PERSPECTIVES	75
1	PERI	ODIC CLASSIFICATION OF ELEMENTS	9
	1	Quantum numbers and their significance, Concept of orbitals.	2
	2	Orbital wise electron configuration, energy sequence rule – Pauli's	2
		principle, Hund's rule, stability of filled and half-filled orbitals.	
1	3	Electronic configuration and classification of elements in to s,p,d and f	1
		blocks	
	4	Periodic properties, Ionisation energy, Electronegativity and Electron	2
		affinity. Diagonal relationship.	
	5	Important characteristics of representative elements: valency, oxidation	2
		states, ionic and covalent bond formation Important characteristics of	
		transition elements: variable valency and oxidation states, formation of	
		Complex compounds.	
II	CHE	MICAL BONDING	9

	6	Energetic of bond formation – Types of Chemical bonds – Energetics of ionic bond formation – Lattice energy – Born Haber Cycle - Fajan's rules.	2
	7	Polarity of covalent bond its relation with electronegativity Electro negativity scales – Paulings and Mullikan's approaches, factors influencing polarity Dipole moment – its relation to geometry.	2
	8	Hydrogen bond – inter and intra molecular – its consequences on boiling point, volatility and solubility.	
	9	Concept of Hybridisation– sp, sp ² , sp ³ , dsp ² , dsp ³ , sp ³ d ² , and sp ³ d ³ with examples Explanation of bond angle in water and ammonia - VSEPR theory, geometry of molecules with bond pairs of electrons, bond pairs and lone pairs of electrons, limitations of VSEPR Theory.	2
	10	A brief review of molecular orbital approach, LCAO method – bond order, bond distance and stability of O_2 , O_2^{2+} , O_2^{2-} , NO, NO ⁺ , CO and HF.	2
III	ORG	ANOMETALLICS	9
	11	Definition and classification, Organo metallic compounds of Mg, Sn, Li, Hg, Fe and their synthesis, applications	3
	12	Biological and environmental aspects of organic compounds – organometallic compounds in medicines – organomercury, organoboron, organosilicon and organo arsenic compounds	2
	13	Outline of preparation and uses Antitumour drugs, silylated derivatives of bioactive organic compounds in agriculture and horticulture	3
	14	Environmental aspects of Organometallic compounds	1
IV	ENV	RONMENTAL POLLUTION AND ANALYTICAL PRINCIPLES	18
	15	Air pollution: Composition of air, major causes of air pollution	2
	16	Pollutants in air-carbon monoxide, carbon dioxide, oxides of Nitrogen and sulphur, chlorofluro carbons- effect of using refrigerators and air conditioners, Particulate matter- Acid rain, Greenhouse effect, ozone layer and its depletion	2
	17	Water pollution: causes- heat, industrial waste, sewage water, detergents, agricultural pollutants	2
	18	Treatment of industrial waste water- Activated charcoal, Reverse osmosis Quality of drinking water- Indian Standard and WHO standard- Dissolved oxygen- BOD, COD	2
	19	Soil pollution: pesticides, fertilizers, Industrial waste, Plastic.	1
	20	Principles of volumetric analysis- primary standard – standard solutions - normality and molarity	2
	21	Theory of acid - base titrations, permanganometric and dichrometric titrations, iodometric and complexometric titrations	2
	22	Theory of acid – base and redox indicators	2
	23	Beer- Lambert law- Principles of colorimetry – Estimation of Iron and phosphate	2
	24	Lab safety - Risk, Hazard, Chemical Hazard.	1
V	VOL	UMETRIC ANALYSIS	30

25	Section A: Volumetric Analysis (8 Experiments from Section A are	15
	compulsory)	
	7. Preparation of standard solutions.	
	8. Neutralization Titrations	
	g. Strong acid – Strong base	
	h. Strong acid – weak base	
	i. Weak acid – strong base.	
	9. Redox Titrations - Permanganometry	Ċ,
	e. Estimation of oxalic acid.	$\langle \rangle$
	f. Estimation of $Fe^{2+/}FeSO_4.7H_2O/Mohr's$ salt.	
26	Section B (Open ended: Any 3 experiments are to be conducted -	15
	May be selected from the list or the teacher can add related	
	experiments)	
	1. Dichrometry	
	2. Iodometry & Iodimetry	
	3. Complexometry	
	4. Colorimetry	

References

- 1. B.R Puri, L R Sharma K C Kalia, Principles of Inorganic Chemistry, Sobhanlal Nagin Chand & Co. New Delhi
- 2. Manas chanda, Atomic structure and Chemical bonding in molecular Spectroscopy, Tata Mc Graw Hill.
- 3. Malik, Tuli, Madan, Selected Topics in Inorganic chemistry, S Chand.
- 4. J D Lee, Concise Inorganic Chemistry, ELBS
- 5. D.A Skoog, D M West, F J, Holler, S R Crouch, Fundamentals of Analytical Chemistry,8th Edn., Brookes/Cole, Thomson Learning, Inc, USA, 2004.
- 6. A. I. Vogel, Quantitative Analysis.
- 7. Day and Underwood, Quantitative analysis: Laboratory manual.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the rules for filling electrons in atomic orbitals	U	PSO-1
CO-2	Discuss theories of chemical bonding and their limitations	U	PSO-1,2
CO3	Predict geometry of molecules from the type of hybridisation.	Ар	PSO-1,2,3
CO 4	Discuss the applications of organometallics.	U	PSO-1,2,3

CO 5	Critically select suitable indicators for acid base and redox titrations	Е	PSO-1,2,3
CO 6	Apply the basic principles in quantitative analysis	Ap	PSO-1,2,3,4
CO 7	Discuss the factors affecting environmental pollution	U	PSO-1,2,3,4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: CHEMICAL FRONTIERS – BONDING TO ENVIRONMENTAL PERSPECTIVES

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO-1,6 PSO-1	U	F, C	L	-
2	CO-2	PO-1,6 PSO-1,2	U	F, C	L	-
3	CO3	PO-1,3,6 PSO-1,2,3	Ар	F, C, P	L	-
4	CO 4	PO-1,6 PSO-1,2,3	U	F, C	L	-
5	CO 5	PO-1,2,3,6 PSO-1,2,3	E	F, C, P	-	Р
6	CO 6	PO-1,2,6 PSO-1,2,3,4	Ар	F, C, P	-	Р
7	CO 7	PO-1,6 PSO-1,2,3,4,5	U	F, C, M	L	-

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2	-	-	-	-	1	-	-	-	-	2	-	-
CO 2	2	1	-	-	-	1	-	-	-	-	2	-	-
CO 3	2	2	3	-	-	1	-	1	-	-	2	-	-

University of Kerala

CO 4	2	1	3	-	-	1	-	-	-	-	2	-	-
CO 5	2	2	3	-	-	1	1	1	-	-	2	-	-
CO 6	2	2	3	3	-	1	1	-	-	-	2	-	-
CO 7	2	2	2	3	2	1	-	-	-	-	2	-	-

Correlation Levels:

		Č.
Level	Correlation	1
Level		-
-	Nil	
1	Slightly / Low	JY'
2	Moderate / Medium	
3	Substantial / High	2
	~~ Y	-

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	-			
	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	J.		\checkmark
CO 3	~	Ú'√		\checkmark
CO 4	1	\checkmark	\checkmark	\checkmark
CO 5	\checkmark			\checkmark
CO 6			\checkmark	\checkmark
4	X			